博王娱乐-澳门永利赌场老板名字-海立方娱乐-威尼斯人娱乐城 老品牌值得您信赖

學(xué)術(shù)活動(dòng)   NAVIGATION

Real-Time Signal Control for Large Heterogeneous Traffic Networks

時(shí)間:2024-12-23 來(lái)源:薄翠梅 作者: 攝影: 編輯:馮羽璐

報(bào)告題目:Real-Time Signal Control for Large Heterogeneous Traffic Networks

報(bào)告人:Prof. Rong Su

報(bào)告人單位:新加坡南洋理工大學(xué)

報(bào)告時(shí)間:2024年12月24日(周二)14:30-16:30

會(huì)議地點(diǎn):電氣工程與控制科學(xué)學(xué)院416報(bào)告廳(崇德樓D座416)

舉辦單位:電氣工程與控制科學(xué)學(xué)院

報(bào)告人簡(jiǎn)介:RongSu,教授,博導(dǎo),新加坡南洋理工大學(xué)電氣與電子工程學(xué)院計(jì)算機(jī)控制與自動(dòng)化碩士項(xiàng)目負(fù)責(zé)人、KTH-NTU 聯(lián)合博士項(xiàng)目管理委員會(huì) NTU負(fù)責(zé)人。研究方向包括多智能體系統(tǒng)、離散事件系統(tǒng)理論、基于模型的故障診斷、網(wǎng)絡(luò)安全分析和綜合、復(fù)雜網(wǎng)絡(luò)的控制和優(yōu)化,以及在柔性制造、智能交通、人機(jī)界面、電源管理和綠色建筑中的應(yīng)用,擁有330多篇期刊和會(huì)議出版物、2部專(zhuān)著、18項(xiàng)已授予/申請(qǐng)的專(zhuān)利,曾獲得多項(xiàng)最佳論文獎(jiǎng),包括IEEE/CAA Journal of Automatica Sinica 2021年Hsue-shen Tsien論文獎(jiǎng)等。 目前,他擔(dān)任IEEE Transactions on Cybernetics、Automatica (IFAC)、Journal of Discrete Event Dynamic Systems: Theory and Applications和Journal of Control and Decision的副主編。

報(bào)告摘要:Traffic congestion in urban areas significantly increases the commuting time for passengers and introduces unnecessary fuel burns and carbon emissions to the fragile urban ecosystem. Traffic lights, which is introduced to improve the order in traffic systems, may harm the traveling efficiency if the green times are not properly assigned for each approach. Sensors and controllers are implemented in modern intelligent transportation systems to generate traffic-responsive signal plans, which highly depends on the topological parameter estimation and traffic model based optimization. In this paper, to fulfill the requirements of constructing a V2X-enabled traffic light control scheme, a closed-loop traffic light scheduling strategy is proposed. A macroscopic model is introduced to depict the traffic movements in the network, which involves the traffic flow dynamics and the prediction of speed variations. A mixed integer linear model is elaborated to generate optimal traffic light plans. Topological parameters, such as turning ratios from each approach, are required to precisely depict the traffic movements. A learning-based parameter estimator is designed to on-line predict the turning ratios based on historical traffic data and traffic light assignments. Simulations show that the convergence is achieved under constant cyclic flow profiles, and our proposed closed-loop traffic light scheduling strategy could achieve significant reduction on key performance indices.

審核人:薄翠梅


學(xué)術(shù)活動(dòng)